Embeddings of Surfaces into 3-space and Quadruple Points of Regular Homotopies

نویسنده

  • TAHL NOWIK
چکیده

Let F be a closed orientable surface. We give an explicit formula for the number mod 2 of quadruple points occurring in any generic regular homotopy between any two regularly homotopic embeddings e, e : F → R. The formula is in terms of homological data extracted from the two embeddings.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automorphisms and Embeddings of Surfaces and Quadruple Points of Regular Homotopies

Let F be a closed surface. If i, i′ : F → R3 are two regularly homotopic generic immersions, then it has been shown in [5] that all generic regular homotopies between i and i′ have the same number mod 2 of quadruple points. We denote this number by Q(i, i′) ∈ Z/2. For F orientable we show that for any generic immersion i : F → R3 and any diffeomorphism h : F → F such that i and i ◦ h are regula...

متن کامل

Quadruple Points of Regular Homotopies of Surfaces in 3-manifolds

Definition 1.1. Let F be a (finite) system of closed surfaces and M a 3-manifold. A regular homotopy Ht : F →M, t ∈ [0, 1] will be called closed if H0 = H1. We will denote a closed generic regular homotopy by CGRH. The number mod 2 of quadruple points of a generic regular homotopy Ht will be denoted by q(Ht) (∈ Z/2.) Max and Banchoff in [MB] proved that any generic regular homotopy of S in R wh...

متن کامل

FINITE ORDER q-INVARIANTS OF IMMERSIONS OF SURFACES INTO 3-SPACE

Given a surface F , we are interested in Z/2 valued invariants of immersions of F intoR3, which are constant on each connected component of the complement of the quadruple point discriminant in Imm(F,R3). Such invariants will be called “q-invariants.” Given a regular homotopy class A ⊆ Imm(F,R3), we denote by Vn(A) the space of all q-invariants on A of order ≤ n. We show that if F is orientable...

متن کامل

Realization of Regular Maps of Large Genus

Regular map is an algebraic concept to describe most symmetric tilings of closed surfaces of arbitrary genus. All regular maps resp. symmetric tilings of surfaces up to genus 302 are algebraically known in the form of symmetry groups acting on their universal covering spaces. But still little is known about geometric realizations, i.e. finding most symmetric embeddings of closed surfaces and a ...

متن کامل

Generalized Helices and Singular Points

In this paper, we define X-slant helix in Euclidean 3-space and we obtain helix, slant helix, clad and g-clad helix as special case of the X-slant helix. Then we study Darboux, tangential darboux developable surfaces and their singular points. Especially we show that the striction lines of these surfaces are singular locus of the surfaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999